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We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim
of understanding the observed broadening of 13C NMR lines in the organic spin liquid material
�-�ET�2Cu2�CN�3. For high temperatures down to J /3, we calculate local susceptibility near a nonmagnetic
impurity and near a grain boundary for the nearest-neighbor Heisenberg model in high-temperature series
expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low
density of impurities we would not be able to explain the line broadening present in the experiments already at
elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons.
We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller
projection. The zero-temperature local susceptibility decays as a power law and oscillates at 2kF. As in the
high-temperature analysis we find that a low density of impurities is not able to explain the observed broad-
ening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large
density of pointlike disorder gives broadening that is consistent with the experiment down to about 5 K, but
that below this temperature additional mechanism is likely needed.
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I. INTRODUCTION

Spin liquid phases are some of the most interesting phases
known to exist theoretically. However they are hard to
achieve experimentally because interactions usually favor or-
dered phases. To achieve spin liquid we have to frustrate
these interactions. Triangular lattice provides a natural way
to do this. For the nearest-neighbor antiferromagnetic
Heisenberg model the frustration is not strong enough and
the ground state is ordered. However, the order is weak, and
it is likely that in the presence of appropriate additional in-
teractions, spin liquid phases arise.

This work is motivated by the layered organic compound
�-�ET�2Cu2�CN�3.1–6 It contains ET molecules that pair up,
each pair lies on sites of triangular lattice and has one elec-
tron less than the full filling. The material at ambient pres-
sure is an insulator. Thus it is effectively a spin-1/2 antifer-
romagnet on the triangular lattice. While the Heisenberg
exchange J�250 K, the system shows no signs of ordering
down to 32 mK making it a good candidate for the
spin liquid. �For comparison, a related compound
�-�ET�2Cu2�N�CN�2�Cl orders at 27 K.1� There are likely
additional interactions among spins, especially ring ex-
changes that are thought to be responsible for driving the
system into the spin liquid.7–10 What makes the appearance
of such interactions natural is that under moderate pressure
the �-�ET�2Cu2�CN�3 undergoes a transition to a supercon-
ductor at low temperature �and a metal at higher tempera-
ture�, so there are significant virtual charge fluctuations
present already in the insulator at ambient pressure.1,2

Crudely, we can think of the system as a half-filled Hubbard
model close to the Mott insulator–metal transition, and we
can estimate that the ring exchange interactions in the effec-
tive spin model are strong, enough to destroy the magnetic
order.7,8,11 An alternative explanation of the insulator in
terms of inhomogeneous electron localization has also been
suggested.3,5

The spin liquid phase remains enigmatic. Thermodynamic
measurements show many gapless excitations in this charge
insulator—at least as many as in a metal. One appealing
proposal that captures some of the observed phenomenology
is a state with spinon Fermi surface.8–10 Other scenarios have
also been suggested,12–15 particularly with the view toward
low temperatures.

We are specifically interested in the 13C NMR measure-
ments of the Knight shifts,3–5 and what we can learn from
these for the material and the spin liquid. The measurements
effectively give a histogram of local magnetic susceptibility
and are therefore a good probe of the magnetic properties.
The experiment shows strong broadening of such histogram
as one lowers the temperature. The width of the peak broad-
ens by about a factor of 40 as the temperature is lowered
from 250 K to roughly 1 K and saturates as the temperature
is lowered further. The distribution of local susceptibilities
can be produced by disorder, since the susceptibility can
have various values as a function of distance from, say, an
impurity. It is hard to imagine other mechanisms producing a
distribution �except spin glass, but no such behavior is ob-
served�. Therefore in this paper we investigate the effects of
disorder on the spin system.

Unfortunately, not much is known about the impurities
and their role in the insulating �-�ET�2Cu2�CN�3 at ambient
pressure. At high pressure of 0.8 GPa, the material is a rela-
tively clean metal with kFl�50–100, where kF is the Fermi
wave vector and l is the mean free path; also, Shubnikov–
deHaas oscillations have been observed in this system. It is
believed that the Cu2+ impurity concentration is very low,1

less than 0.01%. There are quite possibly additional sources
of disorder such as different local environments coming from
different conformations of the ET molecules,16–19 or from
disorder in the insulating anion layers such as the disordered
�CN�− group.5,20–22 Analyzing the NMR experiments can
then provide some understanding of the disorder, its strength,
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and role in the insulator phase. Taking up the Mott insulator
picture as one viable candidate, where the insulator is prima-
rily driven by electron-electron interactions, we set out to
study models of nonmagnetic disorder in a spin-1/2 system
on the triangular lattice. We study progressively different
kinds of disorder and analyze what each predicts about the
local susceptibilities in turn.

This paper consists of two separate approaches: one, the
high-temperature series expansion, and the other, low-
temperature analysis assuming the system forms a spin liq-
uid. High-temperature series expansion is rather restricted by
the range of temperatures and the types of models it can
study, but for those models it gives quantitatively accurate
results in the regime of its applicability. We are able to cal-
culate local susceptibilities of the nearest-neighbor Heisen-
berg model on an arbitrary graph where all exchange cou-
plings are the same. In particular, we can study triangular
lattice with a missing site, with a boundary, or in the pres-
ence of a finite density of missing sites. The missing sites are
models of nonmagnetic impurities, while the boundary is a
model of grain boundary. We can go down to temperature of
roughly J /3. In this range, the experiments already see
broadening of the Knight shift distribution by about a factor
of 2 and thus we can compare the calculated results to the
experiments. Of course, the real material has interactions be-
yond the nearest neighbor since experimentally it is a spin
liquid, which is qualitatively different from the expected
120° ordered state in the Heisenberg model on the triangular
lattice. However, the multispin exchanges do not change the
qualitative picture of the high-temperature paramagnet and
their quantitative effects can be roughly approximated by
renormalized two-spin exchanges, especially when the corre-
lation length is short. So we can make reasonable estimates
by working with the Heisenberg model.

At low temperatures we assume phenomenologically the
system forms a spin liquid with Fermi sea of spinons �stabi-
lized by additional interactions�.8–10 We first analyze this in
mean field where it reduces to free fermionic spinons hop-
ping on the triangular lattice. The spin liquid can naturally
accommodate nonmagnetic disorder in the spin model by the
corresponding changes in the spinon hopping amplitudes.
The full theory also contains a dynamical U�1� gauge
field,9,23–27 but this is hard to analyze directly. Instead, to go
beyond mean field we study wave functions obtained by
Gutzwiller projection of the mean-field states. In one dimen-
sion, this can capture the full theory, while in two dimensions
this is only an approximation8 but a reasonable one and deal-
ing directly with physical spins.

Overall, we find that the local susceptibility decays rather
quickly near an impurity and at small impurity densities such
as 0.01% of Cu our results are very far from explaining the
experimental data—they would produce very sharp histo-
grams as most of the sites are in the bulk. In the spin liquid
phase, the local susceptibility has an oscillatory 2kF compo-
nent that decays with a power-law envelope away from de-
fects, so the impurities can be felt at larger distances, but the
overall amplitude that we find is still small.

We then studied the system at high temperature near a
boundary and in the presence of a larger density of missing
sites. We also studied the system at low temperature in the

mean field near a boundary, in the presence of a larger den-
sity of missing sites, and in the presence of random disorder
on bonds which is either uniform or localized at a fraction of
bonds. From this analysis it appears that the most likely sce-
nario is the case of relatively large density of pointlike dis-
order, where the linewidths broaden with lowering the tem-
perature until the correlation length becomes comparable to
the typical distance between defects. A puzzling feature is
that with such fixed disorder we cannot reproduce the ob-
served strong temperature dependence of the NMR lines as
the temperatures are lowered further. On the other hand, such
models in the metallic phase where we considered electrons
with random on-site potentials match reasonably with the
experiments under pressure, where the NMR linewidths re-
main unchanged with temperature.5 It could be also that the
effective strength of disorder increases as the temperature is
lowered in the insulator, perhaps because of the vanishing
screening of charged impurities. Better understanding of the
disorder in the �-�ET�2Cu2�CN�3 system is clearly needed.

A new triangular lattice spin liquid material
EtMe3Sb�Pd�dmit�2�2, Ref. 28, has rather similar phenom-
enology to that of the �-�ET�2Cu2�CN�3 and also appears to
have significant NMR line broadening, which may thus be a
common feature of gapless spin liquids. It would be interest-
ing to compare both systems more.

Finally we would like to mention that we have performed
similar analysis on kagome antiferromagnet addressing the
NMR line broadening in the candidate spin liquid material
ZnCu3�OH�6Cl2.29–31 There, the disorder is relatively well
understood experimentally and is estimated to be about 5%
vacancies. Our calculations32 in this case compare sensibly
with the experiment.

II. SUMMARY OF THE EXPERIMENTAL
INHOMOGENEOUS LINE BROADENING

In what follows, we calculate local susceptibility in spin
models with nonmagnetic disorder. To set the stage, we sum-
marize the main experimental findings in the form conve-
nient for judging theoretical results. A direct comparison
with the experiments is to look at the width of the local
susceptibility histograms relative to the average susceptibil-
ity. In the model calculations the bulk susceptibility is
roughly the location of the histogram peak, while in the ex-
perimental plots we should also be aware of the chemical
shifts. The referencing to the average susceptibility is justi-
fied since in the �-�ET�2Cu2�CN�3 this remains roughly un-
changed around �̄=5�10−4 emu /mol in a wide temperature
range between 300 and 30 K and then decreases somewhat to
a value around �̄=3�10−4 emu /mol at 1 K. Also, the bulk
values can be quantitatively reproduced by suitable choices
of the model parameters such as J in the high-temperature
series study1,11 or the spinon hopping amplitude in the spin
liquid model �see Sec. IV�.

References 3–5 show the NMR lines plotted versus shifts
from tetramethylsilane �TMS�, in parts per million �ppm�.
For the more strongly coupled 13C whose hyperfine coupling
constant is 0.21 Tesla / ��B dimer�, the susceptibility of
�̄=5�10−4 emu /mol corresponds to �B /B=1.8�10−4
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=180 ppm Knight shift. Thus a 20 ppm shift corresponds to
roughly a 10% relative change in the susceptibility at higher
temperatures and a somewhat larger relative change at lower
temperatures. Reading from the experiments, the full width
at half maximum �FWHM� of the line measured in such rela-
tive terms increases from about 10% at 300 K to about 20%–
30% at 50 K to about 50%–60% at 10 K, and then increases
steeply to about 300% at 1 K and saturates around this value
at still lower temperatures. One can appreciate the dramatic
broadening directly from the line shapes in Refs. 3–5, where
the distance of this line from the origin sets a natural scale
since the Knight shift and the chemical shift are comparable.
�Note that to see the inhomogeneous Knight shifts over the
intrinsic linewidths the experiments are done in large fields
of order 8 Tesla; this may be inducing more significant
ground-state modifications, while in this work we focus on
the linear-response susceptibilities and their distributions.�

We note that the broadening first sets in gradually coming
from high temperatures. The line is already 20–30 % broad
at T=50 K�J /5, which we can hope to understand quanti-
tatively using reliable high-temperature series approach. It
further broadens by about a factor of 2–3 in the region 50 K
to 5–10 K where we expect the spin liquid approach to be-
come applicable. We now present these two studies.

III. HIGH-TEMPERATURE SERIES EXPANSION

We consider spin-1/2 nearest-neighbor antiferromagnetic
Heisenberg model on triangular lattice. Local spin suscepti-
bility at site i is given by

�loc�i� =
�g�B�2�Si

zStot
z �

kBT
, �1�

where Stot
z =	 jSj

z. We calculate �’s in the high-temperature
series expansions in the presence of nonmagnetic impurities
treated as missing sites �vacancies�, and also near an open
boundary which is a model for a grain boundary.

The expansion is performed to the 12th order in J �or 13th
order in 1 /T� using the linked cluster expansion.33 The out-
line of the procedure is as follows. We generate all abstract
graphs up to desired size. Then we generate all subgraphs of
these graphs, keeping track of the location of each subgraph
in the graph.

We calculate the local susceptibility for each graph at
each point of the graph. Then we subtract all the subgraphs
of each graph as needed in the linked cluster expansion to get
the contribution this graph would give when embedded into
lattice. The local susceptibility on any lattice can be calcu-
lated by creating all possible embeddings of all graphs and
adding their contributions at every site. In this general for-
mulation the lattice does not need to be regular; it can be any
connected graph. In particular this procedure applies to the
triangular lattice with a missing site, with a finite density of
missing sites, or with a boundary. In practice, for the single
impurity case, we consider all the graphs containing the im-
purity and subtract their contribution from the uniform sus-
ceptibility. Similar procedure is used in the case with the
boundary. In the end, we obtain exact 1 /T series expansion
for the system with such disorder.32

After obtaining the series, we extend it beyond the radius
of convergence using the method of Padé approximants. We
use �5,6�, �5,7�, �6,6�, �6,7� and expand in variable 1 / �T
+�� where � is usually 0.08 as in Ref. 34. Depending on �
one might get a pole in the expression, and hence divergence
in susceptibility even at relatively large temperature. This
usually happens say in one of the approximants while the
others still overlap. At low enough temperatures they start
diverging and we take that as a point where the approxima-
tion stops being valid. Different values of � are tried, and
sometimes it is possible to tune to a value where all the
curves overlap completely to a much lower temperature, but
that is a pathology, probably indicating that the polynomials
are all the same. For other values of � the curves usually
start to diverge from each other at around the same tempera-
ture.

A. Point impurity and nonzero density of impurities

The coefficients of the susceptibility of the first five near-
est neighbors near the impurity are in Table I. The corre-
sponding local susceptibilities along with the uniform sus-
ceptibility are plotted in Fig. 1. We see that the local
susceptibility decays to the uniform one in few lattice spac-
ings. This is consistent with calculated very short correlation
length in Ref. 34. The deviation of the near-neighbor local
susceptibility from the uniform value reaches roughly 15% at
T�J /3.

We would like to see if the observed NMR lines can be
explained from a finite density of such impurities. The pre-
diction is obtained by plotting the histogram of susceptibili-
ties. First we note that at T�100 K�J /3 the experimental
lines are spread by about 	10% which is roughly equal to
the calculated deviation of the local susceptibility of the
nearest neighbors from the uniform susceptibility. The ex-
perimental curves have a significant weight spread over this
width, and so if the calculated curves are to explain them, the
first few nearest neighbors of impurities would have to form
a sizable fraction of the total number of sites. Reference 1
suggests that the system contains about one Cu impurity in
ten thousand which gives about 0.4% fraction for the nearest
neighbors up to �5 in Fig. 1 and hence it is very far from
explaining the experimental lines—it would predict very
sharp histograms.

One possible explanation of this discrepancy is the fact
that the Heisenberg model is not entirely adequate because it
would eventually predict ordering at low temperatures,
which is not observed in experiments, and so there are addi-
tional interactions. Indeed, Ref. 8 proposed that ring ex-
changes are important to stabilize the spin liquid phase.
However, since these interactions are still short range, the
volume fraction of sites that are affected by vacancies at
these temperatures is still small, so low impurity density can-
not fit the observed data.

A different more likely explanation is that there are more
impurities or more disorder in the system. One possible
source of disorder is from extended defects such as grain
boundaries, and in Sec. III B we consider the susceptibility
near a boundary. Another possible source is from the ethyl-
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ene group disorder in the ET molecules which is thought
to be important in a related �-�ET�2Cu�N�CN�2�Br
material.16–19 This can give rise to a large density of point
perturbations which are mild but present everywhere. An-
other possible source is disorder in the �CN�− groups in the
insulating anion layers.20–22 We currently do not know much
about the presence and magnitude of such perturbations in
the spin liquid �-�ET�2Cu2�CN�3 material.

To simulate a case of a large density of pointlike disorder,
we study the system in the presence of 5% of missing sites.
Realistic pointlike disorder is probably of a different nature,
but vacancies are all we can do in the systematic high-
temperature expansion. However we hope the basic features
of the histogram would be similar. The result is shown in
Fig. 2. Due to a large number of diagram embeddings we
were able only to go to the 11th order in J �rather than 12th
as above� on a 20�20 lattice and reliably only down to T
�0.5J. The error on the histogram values is roughly 	20%.

Crudely, we see two sets of peaks in Fig. 2: the one on the
right is associated with the nearest neighbors of the impuri-
ties while the one on the left with the rest of the sites. The
finer features are associated with sites at different positions
with respect to several impurities.

As we have already mentioned, the nearest-neighbor sus-
ceptibility is different from the uniform one by about 10%,
which is roughly similar to the broadening of the NMR line
at T�100−50 K. However the temperature dependence of
�1−�uniform is also weak, see Fig. 1. In the case with very
low density of impurities such as 0.01% Cu, besides having
this value only at very few sites, it would not give broaden-

TABLE I. Series coefficients an of �=
g2�B

2

T 	n=0
an

4n+1�n+1�! �
J
T �n for susceptibility �uniform of the pure triangular lattice and for the five closest

neighbors �i of nonmagnetic impurity as indicated in Fig. 1. The coefficients for the uniform susceptibility agree with Ref. 34.

n �uniform �1 �2 �3 �4 �5

0 1 1 1 1 1 1

1 −12 −10 −12 −12 −12 −12

2 144 108 132 138 144 144

3 −1632 −1248 −1312 −1400 −1560 −1608

4 18000 15840 13840 13320 14880 16160

5 −254016 −237024 −235776 −213984 −189168 −192000

6 5472096 4144000 5539968 5817504 5084464 4564560

7 −109168128 −73210624 −93128960 −109647744 −123994240 −118354560

8 818042112 1133266176 222006528 112173696 913327488 1312247808

9 17982044160 −18170275840 11644656640 30128806400 38868680960 28664414720

10 778741928448 581215033344 1535178191360 1512448745984 328581324544 −104688021504

11 −90462554542080 −21239974981632 −84715204509696 −115649955864576 −118987461639168 −96786926315520

12 829570427172864 215676565092352 −788032311226368 −332026092103680 2149211723363328 2738259718125568

Χuniform

Χ1

Χ2
Χ3

Χ4
Χ5

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0
������
T

J
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Χ

FIG. 1. �Color online� The uniform susceptibility and the local
susceptibilities at the first five inequivalent neighbors of nonmag-
netic impurity �missing site, which is denoted by an open circle�.
The four curves for each �i are the Padé approximants
�5,6�,�5,7�,�6,6�,�6,7�. � is in units of �g�B�2 /J.

T�0.6J

T�0.75J

T�0.9J

T�1.2J

T�1.5J

0.06 0.07 0.08 0.09 0.10 0.11 0.12
Χ

FIG. 2. The histogram of local susceptibilities for a 30�30
triangular lattice sample with 5% randomly placed vacancies, ob-
tained from the high-temperature series expansion to 11th order in
J. � is in units of �g�B�2 /J.
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ing of the lines. In the case of 5% of impurities, Fig. 2, this
corresponds to the distance between the two sets of peaks not
changing significantly with temperature. On the other hand
the �set of� peaks themselves visibly broaden more. Remem-
bering that here we plot histograms corresponding to the
“ideal” system �i.e., with only Heisenberg exchanges and
vacancies, and not including other interactions and sources
of linewidths�, few percent of impurities can indeed produce
reasonably broadened line shapes at these elevated tempera-
tures.

B. Line impurity

In this subsection we consider pure triangular lattice near
a boundary and calculate susceptibility at various distances
from the boundary. The coefficients of the uniform suscepti-
bility and of the local susceptibility at the first five closest
inequivalent sites are in Table II. The corresponding plots are
in Fig. 3.

We see that the ratio of the local susceptibility to the
uniform one is somewhat larger for the first neighbor here
than in the single vacancy case and more importantly the
temperature dependence is stronger. Furthermore, the line
impurity is an extended object, so a much larger number of
sites are affected. We do not know how common such grain
boundaries are in the �-�ET�2Cu2�CN�3 material to make
predictions for the experiment. However, as in the case with
vacancies, we see that down to T�J /4 only the first few �i
near the boundary deviate significantly from the bulk value.
Thus to explain the experimental lines with such defects we
would require a large density of them.

IV. SPIN LIQUID WITH FERMIONIC SPINONS

The �-�ET�2Cu2�CN�3 system does not order down to
temperatures as low as 32 mK, but has a J�250 K. Thus it
is a good candidate for spin liquid. Among SU�2�-invariant
spin liquids constructed using fermionic spinons, the uniform
spin liquid has the lowest variational energy in the relevant
model with ring exchanges.8 It consists of spinons hopping
on triangular lattice with no fluxes and thus having Fermi
surface. In the full theory, the spinons are coupled to a U�1�
gauge field.9,23–27 This is hard to solve directly. In order to
make progress we solve the problem in the mean-field theory
ignoring the gauge field and obtaining a system of free fer-
mions hopping on the triangular lattice. We also go beyond
mean field by using Gutzwiller projection.

Specifically, in the mean field, we consider free fermionic
spinons �f i
� hopping on the triangular lattice:

Hmf = − 	
�ij�

�tij f i

† f j
 + H.c.� . �2�

The clean system has real tij = t on all bonds. We then study
this in the presence of �i� a missing site, �ii� a line boundary,
�iii� a finite density of missing sites, �iv� and also a random
distribution of hopping amplitudes. These are models of non-
magnetic disorder in terms of what the spinons see.

TABLE II. Series coefficients an of �=
g2�B

2

T 	n=0
an

4n+1�n+1�! �
J
T �n for susceptibility �uniform of the pure triangular lattice and for the five closest

inequivalent neighbors �i to a boundary as indicated in Fig. 3.

n �uniform �1 �2 �3 �4 �5

0 1 1 1 1 1 1

1 −12 −8 −12 −12 −12 −12

2 144 72 120 144 144 144

3 −1632 −752 −896 −1440 −1632 −1632

4 18000 8640 5120 9040 16080 18000

5 −254016 −103488 −108960 −37248 −127296 −230976

6 5472096 1497440 3972864 2808736 1342432 3429216

7 −109168128 −29967872 −58795776 −109978368 −46504448 −21990912

8 818042112 553745664 −912840192 598482432 1331324928 −895304448

9 17982044160 −4034237440 35460869120 74136878080 −6674631680 −1900426240

10 778741928448 −38283289088 1453883081728 −796283040256 −765905530368 2445141614080

11 −90462554542080 −6599243882496 −88646526167040 −131119323998208 1918538846208 −58857804742656

12 829570427172864 433688769173504 −1170019148326912 3744417183383552 1814576120913920 −3956791382702080

Χuniform
Χ1
Χ2
Χ3
Χ4
Χ5 1

2
3

4
5

boundary

0.0 0.5 1.0 1.5 2.0
������
T

J
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Χ

FIG. 3. �Color online� The uniform susceptibility and the local
susceptibilities at the first five inequivalent neighbors of the bound-
ary. The four curves for each � are the Padé approximants
�5,6�,�5,7�,�6,6�,�6,7�. � is in units of �g�B�2 /J.

NONMAGNETIC IMPURITIES IN A S= 1
2… PHYSICAL REVIEW B 79, 024421 �2009�

024421-5



If 
�n�i�� is the set of single-particle wave functions, it is
easy to show that the local susceptibility at temperature T is
given by

��i� =
�g�B�2

2T
	

n

��n�i��2f��n��1 − f��n�� , �3�

where f���=1 / �e��−��/T+1� is the Fermi function. In each
model of impurities, we obtain the wave functions and use
this formula to obtain the local susceptibility. We consider
various kinds of disorder in turn. We present the results, a
very basic discussion, and leave proper discussion of the
possible connection to the �-�ET�2Cu2�CN�3 to a later sec-
tion.

Below we keep the spinon hopping t fixed and vary the
temperature, and the presented susceptibilities are in units of
�g�B�2 / t. In a more systematic calculation, the spinon hop-
ping amplitudes would need to be found self-consistently for
a given spin Hamiltonian and temperature T. In the clean
system, the self-consistent t vanishes above some tempera-
ture of order J �e.g., in the renormalized mean-field scheme
this temperature is 0.75J�. When t becomes nonzero, this
signals that the system becomes correlated paramagnet, and
the spinon mean field is one attempt to capture the growing
local correlations. Below the onset temperature, the self-
consistent t quickly approaches the zero-temperature value,
and it is this regime that we are describing when keeping t
fixed. We can estimate the spinon hopping amplitude in the
renormalized mean-field scheme as t=3J�f i

†f j��0.5J. The
free fermion susceptibility on the half-filled triangular lattice
with such t�100 K would be ��10�10−4 emu /mol,
which is about a factor of 2–3 larger than the experimental
values, but is reasonable given the serious approximations in
such calculations.

We further discuss the self-consistent approach in the case
with random bond disorder in Sec. IV D. Before that in the
examples below, we introduce the disorder into the spinon
problem by hand, either by simply removing the links to
vacancy sites, or by taking randomly distributed bonds.

A. Point impurity

Here we consider the case with only one vacancy. We find
the mean-field wave functions numerically by exact diago-
nalization for system sizes up to 80�80. The resulting local
susceptibility curves for several neighbors of the vacancy are
in Fig. 4.

Precise curves for the susceptibility are hard to obtain at
low temperatures because of the factor f����1− f���� in Eq.
�3�, which becomes increasingly sharp as T→0. Thus fewer
and fewer states near the chemical potential contribute and
eventually the results are polluted by finite-size effects. Nev-
ertheless, we can go to sufficiently low temperatures with
our system sizes, and the results in Fig. 4 for T�0.1t essen-
tially represent the infinite-volume limit. We see that as we
lower the temperature, susceptibilities at more and more
neighbors become separated from the uniform susceptibility.

It is interesting to look at the shape of the local suscepti-
bility as a function of the position. At a low temperature �T

=0.054t� this is plotted in Fig. 5 as obtained from the exact
lattice calculation.

This distribution converges to a zero-temperature distribu-
tion. We can obtain some intuition about the long distance
behavior from a calculation treating the nonmagnetic impu-
rity as a perturbation. The result is

�loc�r� − �̄ = A
cos�2kFr + 
�

r
. �4�

Here kF is the Fermi surface location where the group veloc-
ity points in the observation direction r�, while the phase 

depends on the impurity type and strength �just as in the case
of Friedel oscillations in metals�. The calculation leading to
this result is summarized in Appendix A.

In the present case, the Fermi surface is roughly a circle
with kF varying in the range between 2.67 /a and 2.72 /a,
where a is the lattice spacing. Taking the above expression
and plotting it on the lattice gives a picture looking very
similar to Fig. 5. One interesting thing to notice is that there
is seemingly much longer wavelength along the x̂ direction
than � /kF. This simply comes from the fact when we evalu-
ate the cos�2kFx+
� on the lattice, it picks up similar points
at different hills of the cosine curve because the period
� /kF�1.18a is close to one lattice spacing.
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FIG. 4. �Color online� The uniform susceptibility and the local
susceptibilities at the first five inequivalent neighbors of the impu-
rity obtained for the system of free fermions hopping on the trian-
gular lattice at half-filling. The spinon hopping t is kept fixed and
the susceptibilities are in units of �g�B�2 / t.

0.0783951

0.0661144

FIG. 5. Local susceptibility near impurity at T=0.074t obtained
from the free fermion calculation for size 80�80.
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At a finite temperature, the oscillatory power law is cut
off at the characteristic length

��T� = �vF/�2�T� . �5�

For the half-filled band on the triangular lattice, the Fermi
velocity vF does not vary significantly with the direction and
is in the range between 2.86ta /� and 2.44ta /�. As an ex-
ample, for T=0.1t the correlation length is only ��4a.

Finally, we would like to know if this distribution, with
one impurity per 10 000, can roughly give the observed spec-
tral lines in the �-�ET�2Cu2�CN�3 material. The answer is no,
and the histograms of � are still negligibly narrow.

B. Line defect

In the clean system with the boundary we can write all
wave functions explicitly. The resulting susceptibilities are
shown in Fig. 6 for the first five neighbors as a function of
temperature and in Fig. 7 for fixed T=0.0364t as a function
of the distance from the boundary.

Continuum calculation with a circular Fermi surface pre-
dicts at T=0

�loc�r� − �̄

�̄
= − J0�2kFr� � −

cos�2kFr − �/4�

�kFr

, �6�

where J0 is the Bessel function of the first kind and r is the
normal distance from the boundary. The asymptotic form is
valid also for general Fermi surface, with kF denoting the
momentum where the group velocity is perpendicular to the
boundary.

A finite temperature cuts off the power at the length scale
��T�: roughly, the oscillatory piece is multiplied by
r / �� sinh�r /���. Indeed a six-parameter function a0
+a1 cos�a2r−a3� / �ra4 sinh�a5r�� fits the data like that in Fig.
7 well with a2�2kF, a4�−0.5, and a5�1 /�, in agreement
with our expectations. One interesting thing to notice in Fig.
7 is the apparent period of 4 in terms of the lattice line
spacing; the wavelength in the continuum � /kF is very ac-
curately 4/3 of the line spacing, so the apparent period is
equal to three wavelengths, which is an accidental commen-
suration effect.

Finally, we look at the histogram of susceptibilities. This
depends on the size of the grain—in the present model, the
distance between boundaries. To show an example, we con-
sider the system as in Fig. 6 with boundaries separated by
100 lines of sites. The result is in Fig. 8. The grain boundary
can in principle go in many directions or might not be
straight at all. For the particular orientation that we have
chosen, the near commensuration mentioned above plays a
role at low temperatures. For our grain size, as we lower T,
the susceptibilities start to fail to reach the bulk value, and
thus we obtain a double peak in the histogram �one peak
from the up hills of the sine curve and the other from the
down hills, cf. Fig. 7�. This starts to happen for temperatures
just slightly below the smallest one shown in Fig. 8.

We do not know if this type of disorder is realistic in the
�-�ET�2Cu2�CN�3. The chosen separation of 100 spacings
between boundaries is a rather significant disorder: 2% of the
sites are right next to the boundaries and several times more
are in the immediate vicinity. Still, at temperature above 0.1t
the histograms are very narrow �� is still smaller than five
lattice spacings�, which is why they are shown only below
this temperature. Even at the lowest temperature the line-
width is small, despite the slow decay of �loc�r� away from
the boundary. Thinking about the �-�ET�2Cu2�CN�3, it ap-
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FIG. 6. �Color online� The uniform susceptibility and the local
susceptibilities at the first five inequivalent neighbors of the bound-
ary obtained for the system of free fermions. � is in units of
�g�B�2 / t.
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FIG. 7. The local susceptibility as a function of the distance
from the boundary x �line index in Fig. 6� at T=0.0364t. Note that
the vertical scale does not start at zero and that the x�2 sites lie
within 	15% window around the average.
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FIG. 8. Histogram of the susceptibilities for the system with
grain boundaries separated by 100 lines of sites.
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pears that we need more disorder than this and more spread
across the system.

C. 5% of impurities

In this section we calculate the susceptibility histogram
for the samples with 5% of spin vacancies. It seems unlikely
that this type of disorder is present in the �-�ET�2Cu2�CN�3
in the form of missing ET dimers. However, this could be a
crude spin model if the electron charge distribution is inho-
mogeneous. There are other likely sources of disorder and
this case represents a situation when the disorder is pointlike.
The resulting histograms are in Fig. 9. We see that peak is
quite broad, more like the experimental curves, and it
spreads as we lower the temperature.

D. Random spinon hopping amplitudes

In this section we take a model of nonmagnetic disorder
where the spinon hopping amplitudes are random and uni-
formly distributed in the range �t−� , t+��. The resulting
histograms for � / t=0.2 are in Fig. 10. Note specifically that
the peak of the histogram does not change much below
roughly T=0.44t �the peak does not spread�.

We also tried to make disorder more pointlike and see if
this would cause the peak to spread, as it did for the pointlike
missing sites above. We find that this is indeed the case for
the following simple choice: take 95% of bonds to have one
value and 5% to have twice as large value �results not
shown�.

The fact that pointlike disorder spreads the peak upon
lowering temperature can be understood as follows. As we
lower T the correlation length ��T� grows and more and more

sites start to “feel” the impurities and have susceptibility sub-
stantially different from the bulk value. This will be happen-
ing until the correlation length becomes somewhat larger
than the typical spacing between the point impurities. For the
samples studied we can go as low as T=0.05t �before finite-
size effects set in�, and at this T the correlation length is
roughly ten lattice spacings. Thus we do not expect the his-
togram in Fig. 9 with 5% vacancies to broaden much as the
temperature is lowered further.

So far we took a specific fixed distribution of spinon hop-
ping amplitudes and calculated susceptibilities. As we argue
below, this is reasonable for a model of nonmagnetic disor-
der where couplings in the spin Hamiltonian have some ran-
domness �assuming it is not too strong and the spin liquid
state remains stable�. To treat the system more properly, the
spinon hopping amplitudes should be calculated self-
consistently. For example, in the Heisenberg model with ex-
changes Jrr�, popular mean-field self-consistency conditions

read trr�
� = J̃rr��fr

†fr��; the bond expectation value is for one

spin species and J̃rr� is proportional to Jrr�, e.g., in the so-

called renormalized mean-field scheme one takes J̃=3J. In
the clean system, the above self-consistency condition has
nontrivial solution once the temperature is lower than T

= J̃ /4. Rather quickly below this temperature the spinon hop-
ping becomes large and comparable to the zero-temperature
limit. However, in this specific treatment, the spin liquid with
the Fermi surface is not a stable solution and other spin liq-
uids perform better. Furthermore, as is known from early
slave particle studies, the best states in this mean field are
dimerized. In particular, if we try to solve the self-
consistency equations by iteration starting from a random
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Χ

FIG. 9. Histogram of the susceptibilities for the system with 5%
of vacancies. Note especially that the peaks broaden as we lower
the temperature. The curves are obtained for 60�60 samples and
are in the thermodynamic limit for temperatures shown.
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FIG. 10. Histogram of the susceptibilities for the system with
random values of bonds with randomness 	20%. Note especially
that the peaks do not broaden significantly below T�0.44t. The
curves are obtained for 60�60 samples and are in the thermody-
namic limit for temperatures shown.
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initial trr�, these run away toward some dimerized solutions.
As discussed in Sec. I, we expect that there are additional

spin interactions such as ring exchanges that stabilize the
zero flux spin liquid against other spin liquid states and
dimerized states. Reference 8 presented a schematic mean-
field argument of how the ring exchanges achieve this. The
self-consistency condition is modified to

trr�
� = J̃rr��fr

†fr�� + 	
ss�

K̃P�fr
†fs��fs

†fs���fs�
† fr�� , �7�

where s, s� are all the sites so that each expectation value is
for two sites on a bond, and such sum effectively covers all
four-site rhombi P= �rss�r�� on the triangular lattice that con-

tain the bond rr�. The couplings K̃P are proportional to the
ring exchanges acting around the rhombi.

Reference 8 applied the above scheme to the clean system
at T=0 and found that the uniform spin liquid with no fluxes

in the hoppings is a stable solution for K̃ / J̃�9.9. Note that

the parameters J̃ and K̃ are related to the microscopic
Heisenberg and ring exchanges by disparate numerical fac-

tors, and Ref. 8 contains more details in what sense such K̃ / J̃
values are reasonable in the study of the spin liquid. Here we
mainly use this scheme to have a starting point where the
uniform state is stable in the clean system and see crudely
how the randomness in the microscopic parameters like J
translates to randomness in the spinon hopping amplitudes.

To get some understanding of the self-consistent distribu-
tion of trr� and its temperature dependence we iterated Eq.
�7� until convergence for the following system parameters.

We took K̃P=15 everywhere and took a uniformly distributed

J̃rr� from the interval �1−� ,1+�� for two values �
=0.05,0.2. We find that once the nontrivial solutions appear,

which happens quickly below T�1 /4 �in units of J̃�, the
distribution of trr� is essentially independent of the tempera-
ture and has the same width in relative terms as the distribu-

tion of J̃rr� but is a bit more rounded. Calculating histogram
of susceptibilities for this distribution gives roughly the same
result as calculating it for the box distribution of trr�’s of the

same relative width as that of J̃rr�. This provides some justi-
fication to the preceding models of disorder where we simply
put randomness into the spinon problem by hand.

E. Gutzwiller wave function study of the local magnetization

Let us discuss the spin liquid picture beyond the mean
field. One way to proceed is to consider effective gauge
theory description where spinons interact with the emergent
gauge field. One expects that the power laws in Eqs. �4� and
�6� are modified by the gauge field fluctuations,35–37 but re-
liable quantitative information is lacking.

In this work we go beyond the mean field by Gutzwiller
projection. In the 1D case, this essentially reproduces exact
result38 for the Heisenberg system with a nonmagnetic impu-
rity. However, in 2D the Gutzwiller projection alone likely
does not capture all important fluctuations in the low-energy

theory.8 Nevertheless, by working directly with the physical
spin variables, it gives quantitatively more plausible results
than the mean field.

Specifically, we consider local magnetization distribution
in a partially polarized state both in the mean field and after
the projection. We used this approach to study nonmagnetic
impurities in a kagome spin liquid in Ref. 32 �this reference
also contains more discussion on the connection to the local
susceptibilities�.

It is well known that the Gutzwiller-projected Fermi sea is
an excellent trial wave function for the 1D spin-1/2 chain,
and we test our approach in this case. Figure 11 shows re-
sults for a chain with open boundaries. In the mean field, the
local magnetization is �loc�x��1−cos�2kFx�=1− �−1�x. The
projection dramatically enhances the staggered component.
In the Heisenberg chain, Eggert and Affleck38 predict that the
staggered component in �loc grows as 
x away from the
boundary at T=0, and the Gutzwiller-projected state appears
to capture this result in the mloc. This dramatic behavior of
the �loc near a nonmagnetic impurity has been used to ex-
plain broad lines in spin-1/2 chain compounds even with
small density of impurities.39

Our initial hope was that the 2D spin liquid, which is also
a projected Fermi sea state and whose full theory shows en-
hanced spin correlations at 2kF, could similarly produce
broad �loc histograms around small density of impurities.
However, it appears that quantitative aspects in 2D are such
that small impurity concentration does not give large line
broadening.

Specifically, in the 2D spin liquid case, we studied both a
single impurity and a line boundary and found that mloc− m̄ is
enhanced by projection only by a fixed numerical factor of
about 2. Figure 12 shows representative results in the line
boundary case, where the impurity perturbation is the largest
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FIG. 11. �Color online� Local magnetization profile in a 1D
chain of length L=129 with open boundaries before and after
Gutzwiller projection of a partially polarized spinon Fermi sea state,
here with N↑=65, N↓=64. The excess up spin occupies orbital
sin�kFx�=sin��x /2�, producing a staggered component in �loc with
a constant amplitude. The projection dramatically enhances the
staggered component, which now grows as 
x away from the
boundary, in agreement with Ref. 38 for the Heisenberg chain. Such
effects can produce broad �loc histogram even for small impurity
density in the 1D chain. We want to contrast this with the 2D case,
where we find only a fixed numerical enhancement.
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of the two cases, cf. Eqs. �4� and �6�. The triangular lattice is
constructed by stacking 24 chains of length 24, with periodic
boundary conditions along the chains and open boundaries in
the perpendicular direction. In an effort to bring out more
effect, the excess spin-up population occupies orbitals near
the patch where the Fermi velocity is normal to the bound-
aries, since it is this k-space region that is responsible for the
power law in Eq. �6�. Note that because of this special popu-
lation, the mean-field amplitude of oscillations is larger com-
pared to the case with thermal population of orbitals �irre-
spective of orientation� in Fig. 7. Nevertheless, the figure
shows that the Gutzwiller projection gives only a fixed en-
hancement over the mean field by a factor of about 2. Dif-
ferent system sizes and orbital populations do not change this
result qualitatively. Similar numerical enhancement was ob-
served in our kagome study,32 where we also argued for it
using renormalized mean-field thinking.

To conclude, we expect that all our mean-field results will
experience a similar numerical enhancement in the �loc− �̄ by
the projection, so the histograms will be broader by about a
factor of 2. In particular, we can find negative local suscep-
tibilities, despite the mean field giving only non-negative
�loc. But unlike the 1D, we are not able to get small density
of impurities to produce broad line shapes. One caveat here
is that, as we have already mentioned, the Gutzwiller projec-
tion in 2D does not capture the full gauge theory, and it could
be that the effects of gauge fluctuations are much more dra-
matic �e.g., see footnote37�. This could happen if the actual
spin liquid phase has much stronger correlations than the
mean-field prediction, but at the moment we do not know
how to address this better quantitatively.

V. INHOMOGENEOUS KNIGHT SHIFTS IN THE
METALLIC PHASE

In Sec. IV, we used free fermions as a mean field for the
spinons. Assuming the spin liquid is appropriate in the insu-

lator, the treatment further neglects gauge fluctuations and is
a crude approximation that can change qualitative long-
distance behavior. However, this was the best we could do to
get some quantitative estimates of local properties.

In fact, the free fermion analysis applies more readily to
the metallic phase of the �-�ET�2Cu2�CN�3. The fermions in
Eq. �2� are now electrons themselves, and mean field is rea-
sonable in the Fermi liquid regime. We use the same formula
Eq. �3� to calculate the local susceptibilities. Also, the ana-
lytical results Eq. �4� for the long-distance behavior of �loc�r�
away from a single impurity and Eq. �6� away from a bound-
ary hold in the metal.

Here we are interested in modeling weak disorder in the
metallic phase and connecting with the 13C NMR measure-
ments. In this case, we calculate the histogram of suscepti-
bilities in the presence of random on-site potentials taken to
be uniformly distributed in an interval �−W ,W�. The result
for W=0.3te is in Fig. 13.

Here te is the electron hopping amplitude and is in excess
of 50 meV. This model of disorder is reasonable in the fol-
lowing sense. Note that the disorder strength W should be
compared to the bandwidth, which is several times te, so W
=0.3te is a rather weak disorder. A crude Born approximation
of the electron mean free path due to elastic scattering in the
2D system gives kFl��2vF

2 / �A��2�, where A is the area per
site and ��2 is the variance of the on-site potential. For the
triangular lattice at half-filling we have kFl�8t2 /��2, which
gives kFl�250 for the above disorder. Direct numerical es-
timate of the lifetime of momentum eigenstates in the lattice
system gives a comparable number. Residual resistivities in
the �-�ET�2Cu2�CN�3 in the metallic phase imply kFl�50
and larger, so the disorder that we use is reasonable.

Examining the local susceptibility histograms in Fig. 13,
we see that below roughly T=0.5te the peak no longer
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FIG. 12. �Color online� Local magnetization profile in a trian-
gular lattice with grain boundaries before and after Gutzwiller pro-
jection of a partially polarized spinon Fermi sea state. The lattice is
constructed of 24 chains of length 24, with periodic boundary con-
ditions along the chains and open BC in the perpendicular direction;
see the drawing in Fig. 6. The partial spin polarization is obtained
starting from an unpolarized state and depopulating five spin-down
orbitals and occupying five spin-up orbitals near the Fermi patch
whose normal is perpendicular to the boundary.
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FIG. 13. Histogram of the susceptibilities in the metallic phase,
where we model disorder by random on-site potentials uniformly
distributed in an interval �−W ,W� with W=0.3te. The curves are
obtained for 60�60 samples and are in the thermodynamic limit
for temperatures shown.
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spreads. This T is comparable to the room temperature, and
indeed the available data in the metallic phase show little
temperature dependence of the linewidth.5 Our model line-
widths are reasonable, even though we cannot read off reli-
ably the inhomogeneous broadening component from the
lines in Ref. 5.

In the free fermion case of spinons in the previous section
we found that making the bond disorder more pointlike, by
changing value of only a fraction of bonds from the uniform
value, the peak of the histogram spreads as we lower the
temperature over a wider temperature range compared to the
case where some randomness is present on all bonds. In this
section we also studied whether similar effect takes place for
electrons with random on-site potentials. We set 95% of
chemical potentials to zero and 5% to a positive value, cho-
sen to be 0.5t in one run and 2t in the other. We found that
indeed the peaks spread in this case too. This reinforces the
conclusion made above that more pointlike disorder causes
the �loc histograms to have stronger temperature dependence
of the spread.

VI. DISCUSSION

We summarize the main results with an eye to connect
with the 13C NMR experiments in the �-�ET�2Cu2�CN�3.
First, our high-temperature series study shows that the local
susceptibility near nonmagnetic impurities such as vacancies
or grain boundaries can deviate sizably from the bulk value.
We studied specifically the Heisenberg model with vacancies
and obtained quantitatively accurate results down to T
�J /4. Even at this low temperature, the local susceptibility
is modified perceptibly only within few lattice spacings of
the defects, cf. Figs. 1 and 3. On the other hand, the 13C
NMR experiments show broadening that develops gradually
from high temperatures; the linewidth roughly doubles going
from T�J�250 K down to 50 K, at which the FWHM
already corresponds to about 20%–30% of the bulk suscep-
tibility. In our study, the few close neighbors of the defects
show similar deviation in �loc. However, for a small density
of defects, which was our initial assumption, essentially all
sites would be sufficiently away from impurities and we
would not be able to obtain comparably broad histograms.

We studied vacancies as a model of local nonmagnetic
disorder, but we do not expect significant changes for other
types of disorder such as random bonds. The Heisenberg
model is also not entirely adequate at T=0, where multispin
exchanges likely affect the ground state, but the role of such
terms in a nominally spin model is less important at higher
temperatures. The Heisenberg model is thus a reasonable
choice at such temperatures and was already used success-
fully to understand the bulk spin susceptibility.1,11 From the
high-temperature study with defects, we are led to ask if
there is more disorder in the system than originally thought.
To be able to reproduce the T=50 K lines, we seem to need
the disorder strength comparable to that of few percent
vacancy concentration. Unfortunately, the way the high-
temperature series work, we cannot study directly more re-
alistic models of disorder such as random bonds, but our
work with vacancies gives a rough idea.

Next, we considered the spin liquid with spinon Fermi
surface as a plausible description of the correlated paramag-
net in the temperature range below 50–100 K and down to
few Kelvin. This is a serious assumption, and even within it
we can do quantitative calculations only in the mean-field
approximation, supplemented by Gutzwiller renormaliza-
tions. Proceeding nevertheless, in such spin liquid at low
temperatures, �loc�r�− �̄ decays with slow power laws away
from defects, cf. mean field Eq. �4� �Ref. 37� and Eq. �6�, and
many sites can be potentially affected by impurities. How-
ever, quantitative aspects appear to be such that we would
not get visibly broadened histograms even at T=0 unless
there is a significant density of impurities. If we postulate a
sizable disorder, we can get �loc histograms comparable to
the experimental ones in the temperature range 50 to 10 K.
We find that the variation with temperature depends on the
type of disorder. If the disorder is uniformly spread, e.g., all
bonds are random in some range, the peak stops broadening
at a relatively high temperature of about half the overall
spinon hopping amplitude. On the other hand, for a more
pointlike disorder, the peak keeps broadening to much lower
temperatures. Thus, if the disorder strength is fixed, in order
to get significant temperature dependence of the linewidth in
the spinon analysis we would need a pointlike disorder.

The free fermion mean field applies directly to the metal-
lic side of the phase diagram of the �-�ET�2Cu2�CN�3, which
appears for pressures above 0.4 Gpa. The mean-field fermi-
ons are now the electrons themselves. What is observed5 are
essentially temperature-independent 13C NMR lines. As a
reasonable type of disorder in this case we took a random
distribution of the chemical potentials. Specifically, for a box
distribution �−0.3te ,0.3te�, which gives a reasonably large
kFl�250, we find sensible and temperature-independent �loc
histograms. On the other hand, making the disorder more
pointlike, we find that the histograms broaden as we lower
the temperature. Thus on the metallic side the NMR lines
suggest a uniformly spread disorder.

Returning to the Mott insulator side, it appears that there
is more disorder here than in the same system on the metallic
side. Furthermore, if the disorder is fixed as is reasonable in
the metal, the metallic side suggests it is uniform and not
producing the broadening of the lines, and so this should also
be the case on the Mott insulator side, which contradicts the
experiments. However, let us assume for a moment that the
disorder is pointlike. The peak in Fig. 9 produced for 5%
vacancies broadens by about a factor of 2 or 3 in the range
T=0.5t to 0.05t. Using t�100 K, in the experiment this
correspond to the range 50 K to 5 K where we see broaden-
ing by about a factor of 3 which is thus a reasonable agree-
ment. As mentioned, we do not expect much broadening be-
low 0.05t because the correlation length is already about ten
lattice spacings which is comparable to the distance between
impurities in this example. However the experiment shows
very strong broadening beyond that. It might be that the ori-
gin of the broadening is not disorder and that our spin liquid
picture is not adequate and some other phase is emerging
at low temperatures, perhaps with incipient magnetic
order.13,35,36 There is a way to explain the observed phenom-
ena within spin liquid picture, but it seems to require that the
disorder strength effectively grows as the temperature is low-

NONMAGNETIC IMPURITIES IN A S= 1
2… PHYSICAL REVIEW B 79, 024421 �2009�

024421-11



ered. Below we speculate on how this may come about, but
more experimental input is needed.

One source of disorder mentioned in the literature for the
�ET�-based organic superconductors is ethylene group
disorder.16,17 This was particularly discussed for the
�-�ET�2Cu�N�CN�2�Br material, where significant sample to
sample variations and cooling rate dependence were ob-
served. However, recent studies18,19 suggest that the amount
of such disorder in the �-�ET�2Cu�N�CN�2�Br is small at low
temperatures and that perhaps the insulating polymeric layer
is involved.18

For the spin liquid material �-�ET�2Cu2�CN�3,
literature5,20,21 mentions that one of the �CN�− groups in each
unit cell is orientationally disordered and that such structural
disorder can generate random electrostatic potential through-
out the lattice.22 If such disorder is indeed involved, the
question is then why it does not have comparable pro-
nounced effects on the metallic side. One possible explana-
tion is good screening of charged impurities in the metal and
progressively weaker and eventually absent screening in
the Mott insulator. For example, in the metallic phase,
the Thomas-Fermi screening length is small, �TF
=1 /
4�e2���F��1 Å, where we estimated the density of
states at the Fermi level by ���F�=0.28 / �te��, te=50 meV is
the electron hopping amplitude, and �=850.6 Å3 is the 3D
volume per triangular lattice site. On the insulator side, an
accurate calculation is harder to make. Using semiconductor
language, we can estimate �=
kBT / �4�e2n�, where n is the
number of thermally excited charge carriers. The resistivity
of the insulator at ambient pressure increases by about 4
orders of magnitude when the temperature is decreased from
room down to 25 K. Taking this as an order of magnitude
measure of the change in the density of carriers, we get �
�10–100 Å, which is about several lattice spacings. So one
scenario is that the charged disorder is still well screened at
room temperature but gradually becomes more visible below
100 to 50 K, with the screening essentially absent below
about 10 to 5 K. It might be that this type of disorder is more
pointlike, which further enhances the broadening of the �loc
histogram on the insulator side, but is screened on the me-
tallic side where only weak and more uniformly spread dis-
order remains that does not cause significant histogram
broadening at lower temperatures. In Appendix B, we briefly
discuss how the charged disorder in the electronic system
may translate to that in the spin model for the insulator.

At present, we do not know how to estimate the strength
of disorder in the system and whether the above scenario is
reasonable. Unlike the metallic phase, we cannot use the
electrical resistivity as a measure of impurity scattering. We
want to remark though that if the disorder is not too strong so
that the spin-1/2 model with, say, random couplings is appli-
cable, our spin liquid construction is still a viable candidate
for the ground state. As discussed in Sec. IV D, we can ac-
commodate the bond disorder by adjusting spinon hopping
amplitudes, which are now nonuniform. From the point of
view of spinons, they are now scattered by this disorder.
Interestingly, if the corresponding elastic mean free path is
sufficiently small, the thermodynamics of the spinon-gauge
system with such diffusive spinons differs from the clean
case.24,25 For example, the specific heat behaves as Cdiffusive

�T log�1 /T� as opposed to the clean system Cclean�T2/3,
while the thermal conductivity behaves as �diffusive�T1/2 as
opposed to �clean�T1/3. The thermal conductivity measure-
ments could potentially give an independent estimate of the
degree of disorder in the insulator, while at present the 13C
NMR is our only window to the disorder.
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APPENDIX A: PERTURBATIVE CALCULATION IN
IMPURITY STRENGTH

For a weak nonmagnetic perturbation we find, to linear
order,

�loc�q� =
�g�B�2

2
uimp �A1�

��
k

f��k��1 − f��k�� − f��k+q��1 − f��k+q��
T��k − �k+q�

, �A2�

where ��k� describes the clean system band structure, while
uimp is the appropriate impurity matrix element, for which we
neglect any dependence on the momenta. Analyzing the in-
tegral in the T→0 limit, the q dependence has singularities
on the 2kF surface of the form

−
��q � 2kF�

2�vF
2
c�q − 2kF�

. �A3�

Here vF is the Fermi velocity and c is the curvature at the
appropriate Fermi surface patch. Going back to real space,
we obtain Eq. �4� with A=−uimp / �2�2vF

2c� and 
=0.
The 2kF oscillations of the local susceptibility of free fer-

mions in the presence of impurities can also be related non-
perturbatively to the calculation of the Friedel oscillations in
the local density,35,36

�loc�i� = 	
n

��n�i��2f��n� , �A4�

�loc�i� �
��loc�i�

��
�

��loc�i�
�kF

. �A5�

This gives one power of r slower decay at large distances in
�loc�r� than in �loc�r� away from defects.

APPENDIX B: FROM RANDOM ELECTRON POTENTIAL
TO RANDOM HEISENBERG J

Here we discuss schematically how disorder in the micro-
scopic electronic model translates to disorder in the effective
spin description of the insulator. For an illustration, consider
a Hubbard model
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H = U	
r

nr↑nr↓ − 	
rr�

trr�cr

† cr�
 + 	

r
vrcr


† cr
, �B1�

with hopping amplitudes trr� and on-site potentials vr. Large
U opens a charge gap. To leading order in 1 /U, we obtain
spin-1/2 model with Heisenberg couplings

Jrr� =
4trr�

2

U�1 −
�vr − vr��

2

U2
� . �B2�

Thus, if we have either random hopping amplitudes or ran-
dom potentials, the Heisenberg couplings are also random.

The randomness in the electron hopping amplitudes trans-
lates directly to randomness in the spin exchanges—the latter
is even larger in relative terms. On the other hand, if the

disorder is in the potentials and if these are much smaller
than U, this randomness is effectively renormalized down.
This is natural since the variables in the spin model are
charge-neutral and should be oblivious to such potential dis-
order. Still, the random potentials are seen via virtual excita-
tions and induce nonmagnetic randomness in the spin sys-
tem.

If we need to include multispin exchanges so as to stabi-
lize the spin liquid, there will be some randomness in these
as well. Despite the randomness in the effective spin model
and irrespective of its electronic origin, as long as it is not
too strong, we can proceed with the spin liquid construction
but now the spinon hopping amplitudes become nonuniform.
This was discussed in Sec. IV D. Finally, if the random po-
tentials become comparable to the Hubbard U and lead to
significant variation in the electron density, the very spin
model thinking can become inappropriate.
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